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MAXIMUM TEMPERATURE DROPS AND STRESSES DUE
TO ASYMMETRICAL HEATING OF A PLATE AND A
PRISM OF RECTANGULAR CROSS SECTION

N. Yu, Taits and A. G, Sabel'nikov UDC 539.31:536,24

When heating equipment is used in practice the metal is often heated asymmetrically; this is asso~
ciated with imperfect design of the furnaces, or with the nature of the technological process, This factor
can lead to the formation of considerable temperature drops (At) and dangerous magnitudes of thermal
stresses (g). The present work solves the problem of determining the maximum temperature drops and
the thermoelastic stresses in the case of asymmetrical heating of the plate and the prism of rectangular
cross section in a medium with a constant gas temperature (tg = const).

The value of the Fourier criterion has the form

1 Ay [COS (B, — 6,) — 1]
N , (1)
pg —p? Ay [T — cos (uy — 6]

(FO)Atm. 28 =

when maximum values are reached,

The thermoelastic stresses in this case are determined from the equation

o(l—wv) \1 [cos (Hn 6n> _sin(u, —8,) +sind, ] exp {W u? ar ] , @)
BE (ty—fa) 2B I " @By
where ¢ is the coefficient of thermal diffusivity, m®/h; v is the Poisson ratio; B is the coefficient of linear
expansion, deg™!; E is the modulus of elasticity, kg/cmZ; t,y is the average temperature of the metal, °C;
2B is the thickness of the plate; uy, and 6, are the roots of the characteristic equations; 7 is the duration
of heating, h.

By using (1) it is possible to calculate the maximum values of o.

Similar solutions are obtained for the case of asymmetrical heating of a prism of rectangular cross
section,

The criterion relationships are represented in the form of graphs which are convenient for carrying
out calculations,
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PIECEWISE-CONSTANT PERIODIC THERMAL INFLUENCE
OF A MEDIUM ON A SOLID

Ya. A. Le_vin and M., S. Shun UDC 536.24

The solution of the third boundary problem of thermal conductivity is presented for the case of piece-
wise-constant periodic laws of variation of the coefficient of heat transfer and the temperature of the medi-
um with respect to time in a gquasisteady state.

The present work is an attempt to_establish a region in which the principle of independence of the
average temperature for the period t,,(X, «) is correct with a given accuracy in a quasisteady state from
the dimensions and thermophysical characteristics of the body,

We will introduce the following designations: 7 = 1 /T is dimensionless time; T = Ty + T2 is the period
of variation of the coefficient of heat transfer oy and the temperature of the medium tg, X = x/R and = §/R
are dimensionless coordinates; R is half the thickness of the infinite plate; b = 27/Pd, Pd = 27R?/aT is the
Predvoditel’ criterion; Big = agR/A is the Biot criterion, a is the coefficient of thermal diffusion; s =1,2
is the number of the part of the period,
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The solution is obtained in the form
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where

Bt — 1)
(Bi,T, + Bi,ty) (B, 1)ty 4 Biytyty)

A~ [(Biﬁg — Bifry) 4 2P0 (Biz—Tz-—Biﬁl)].

Example, I ty=1000° t, =100°, Bi; = 0.1, Biy =1, 7y =T, = 0.5, b = 0,01 (Pd = 628), then, on the
basis of (4) the relative error A®) =—0.05%.

Obviously the relationship (4) in this case expresses the principle of independence almost exactly,
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SOLUTION OF NONLINEAR HEAT-CONDUCTION PROBLEMS
BY THE COMBINED APPLICATION OF PERTURBATION
METHODS AND FINITE INTEGRAL TRANSFORMS

A, M, Aizen UDC 536,21

The three~dimensional nonlinear heat-conduction equation is considered, Tt is assumed that the ther-
mal conductivity is linearly dependent on temperature and that the Sturm condition is satisfied, It is shown
that the solution can be reduced to a set of ordinary differential equations by expanding the required solu-
tion in a series and then making successive finite infegral transforms,

It is shown that the kernel of the fransformation for obtaining the unknown functions appearing in the
expansion in powers of a small parameter does not depend on the order of the approximation, Thus explicit
formulas for the temperatures can be obtained

t e 2P| D P D Pyexp [—ay (w2432 0Y] (K, + ok, -+ 02K, + - )}
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Here Py, P,, and Py are solutions of the corresponding Sturm —Liouville problems used to eliminate the
spatial coordinates by the method of finite integral transforms; p, v, and ¢ are eigenvalues of these prob-
lems; ay = /ey is thediffusivity, determined by the temperature-independent parts of the thermal con-
ductivity and the volumetric heat capacity;

Ko= { fyexp[ay(w +v* + 0% 7] dv -+ 9%,
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In the latter relations f;" is the volumetric heat source strength transformed by the successive applica-
tions of finite integral transforms; ¢* is the transformed initial condition, and F¥ is the transformed right-
hand side of the first-approximation equation.

The proposed method is illustrated by solving a nonlinear problem of the heating of a plate of finite
thickness having boundary conditions of the first kind specified on its lateral forces.
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THERMAL STRESSES IN AN UNBOUNDED VISEOELASTIC PLATE

Yu. M. Kolyano and M. V, Khomyak UDC 539.377

The paper deals with an unbounded viscoelastic plate of Kelvin or Maxwell material, which is heated
by an immobile instantaneous line source or by a source whose output alters by a set amount at the initial
instant. The solution is derived for the case %z < i, where n% = @/Aa, with o heat-transfer factor for the
side surfaces z = %§, A is the thermal conductivity, and o is the thermal diffusivity, ny = 3/{1 -2y )d*,

Ng = EM/SGM&, &4 =n/Gyy is the relaxation time, 7/Gk is the delay, 7 is viscosity, v is Poisson's ratio
for the Kelvin material, Gy is the shear modulus for that material, and Ey and Gy are Young's modulus
and the shear modulus for the Maxwell material.

The solution is expressed via the functions

Fo
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for which recurrence relations are established, while computed tables of values are given for the zero and
firgt-order functions,

The numerical results are presented as graphs for an insulated plate of Maxwell material.,

The solution for n% > ®j has been given in a published paper (Inzh, Fiz, Zh., 17, No. 5, 1969).
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THE NUMERICAL SOLUTION OF MULTIPHASE AND
MULTIDIMENSIONAL MODIFIED STEFAN PROBLEMS
\

V. F, Demchenko and D. A, Kozlitin » UDC 536,248.2

The simplest one-dimensional model of mass transport in a monophase binary system forming a
sequence of continuous solid solutions has the form

ac; _ 0 ac,
% ox (Dz’ e )1 E ()<< x<TE (@), 1)

where £; = ;(t) is the position of the boundary between phases i and i + 1 (the equation of motion is assumed
known), C; and Dj are weighted concentrations and diffusion coefficients for one of the elements of the binary
system in phase i. At the boundary between the phases we have the following compatibility conditions:

Ci (gu t) = Mici+1 (Ei! t)r (2)
-, ac, d,
p, % |  _p, %l Sl
ox =40 175y =400 dt +1 £ (1) 3)

The discontinuity in the unknown function at the interphase boundary may be eliminated by introducing
a new function — the mass-transport potential, which is linked with the concentrations by means of the equa-
tion

Ci (x’ t) = pi (xr t)ui (X, t)!

where pj = [n%j] is the solubility coefficient, u; = uj(x, t) the mass-transport potential of the i-th phase,

j=t'
If we make the change of variable (4) in (1)~(3) and interpret the discontinuities in the mass transport poten-
tial fluxes at the interphase boundaries as the presence of a system of g-shaped sources, we can write the
generalized equation describing the mass-transport process throughout the whole of a monophase system as

9 oup = —"—(D%), 4)
X

where p(x, t) = p;(x, t), D(x, t) = Djpj, if x€[f, & 4 4].

Similarly we can write the generalized equation in the multidimensional case. Equation (5) makes it
possible to construct difference schemes for direct calculation, The method of constructing direct calcula-
tion schemes for Eq. (5) was described in [1]. In solving multidimensional problems the discontinuous
functions p and D have to be subjected to smoothing in the neighborhood of the interphase boundaries and a
locally one-dimensional method has to be applied to the smoothed equation.

The above method was used to solve the problem of the redistribution of an impurity in a three-phase
system consisting of a solid body, a liquid, and a solid body, similar to the system which occurs in the
zone refinement of a metal; it was also used to calculate the chemical inhomogeneity in the dendritic (cel~
lular) character of crystallization [2].
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ANALOG-COMPUTER SIMULATION OF THE RELATIONS
BETWEEN THE PARAMETERS OF MOIST AIR

A. E, Pass and N, P, Agafonov UDC 533.1

It is fairly troublesome to calculate the temperature and humidity of air by tables, nomograms, and
analytical relationships, which are difficult to use, in order to choose the optimal characteristics for a
system of air processing.

The paper here abstiracted presents a method we have developed for calculating the parameters of
moist air via electronic analog computers,

The initial parameters are the barometric pressure, the air temperature, and some one of the para-
meters characterizing the humidity: the water vapor pressure, the water content, the relative humidity, or
the wet-bulb thermometer temperature, The electronic apparatus enables one to determine not only all the
missing parameters characterizing the state of air, but also the parameters at the saturation point in this
system,

The model is based on general analytical relationships between the basic parameters of moist air,
and the parameter characterizing the humidity is the water vapor pressure (the partial pressure of water
vapor in the air)., The general electronic system is built up from particular models and is very simple to
operate to determine the changes in all the interesting parameters on heating, cooling, drying, or humidifi-
cation in air-conditioning equipment and in mixing various quantities of air in different states,

One can therefore use exisﬁng schemes for air conditioning to choose the optimum conditions of opera-
tion and to determine the parameter via which the operation should be controlled; in designing an air con-
ditioning system from scratch, one can determine the optimal design and energy characteristics of the
parts in order to obtain the best economic performance,
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DESIGN OF HEAT EXCHANGERS WITH COMPOUND FLOW

K. ., Nechitailo, V. A, Safonov,
M. I. Slobodskoi, and A, I, Yakovlev UDC 536.27

Using the equations of heat balance and heat transfer in an elementary segment of a two-pass heat
exchanger and the solution of a system of differential equations we determine the current value of the tem-
perature in the direct and counter flow passes of a heat exchanger with compound flow:

tor = C1S1emlx + Czszem’x + t;’,
tZII = Clemlx + Czemzx '*l'- t,{,

where
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A new nondimensional form of the equation between the parameters has been derived for a heat ex~
changer with compound flow
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where| is the length of the heat exchanger, W, is the water equivalent of the coolant in the interpipe space,
kI’ k are the products of the heat transfer coefficients with the perimeters of the first and second passes,
= 14— F SR S R = h—th P :M t, &, 1, ¢/ are the temperatures at the inlet and
kn R kn R’ th—1 H—t, v r

outlet in the interpipe space and the main passage.

The dependences I =I(R, P, kp /kII) were derived on a computer and reduced to the form of nomo-
grams | = [(R, P)for k /kgp = 0.5, 1, 2, 3. Using these nomograms we can calculate, without involving
successive approximations, both design and check (operational) calculations. Analysis of the above equa-
tions shows that for particular combinations of R and P an increase in the intensity of heat transfer in the
direct flow leads not to a reduction, but to an increase, in the total length of the heat exchanger,

It is particularly important to take into account the above equations when the heat-transfercoefficients
or the heat-exchanger surfaces in the counter flows are significantly dissimilar (for example, when some
of the tubes in a tubular heat exchanger are clogged or when the heat exchange condifions are different in
the direct and counter flows of a heat exchanger with coaxial coolant flow),
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INVESTIGATION OF A VERTICAL STABILIZED FLOW
OF A GAS SUSPENSION

M., E. Dogin UDC 532,529,5:628.,567.8

A dimensionless equation for calculating the resistance of a material-conducting pipeline for a vertical
stabilized flow of a gas suspension was established on the basis of experimental and theoretical investiga-
tions [1].

The experimental investigations were carried out on a pneumatic transporting device the principal
characteristic features of which were: great length of the vertical material-conducting pipeline, wide range
of variation of the parameters of the two-phase flow, and their automatic recording. The device consisted
of two vertical steel material -conducting pipelines, 27 m high, with an inside diameter of the pipes of 125
and 70 mm. The initial section of the pipelines, of length 150-260 diameters, provided in all modes an ac-
celeration of the solid component being transported to the maximum steady speed. The air velocity at the
entrance of the device was varied from 5 to 50 m/sec, The maximum capacity of the device reached 30
tons /h,

The analysis of the experimental results was based on the principle of additivity of the resistances of
the conveying medium and solid component being transported,

On the basis of the investigations the dimensionless equation for calculating the resistance coefficient
of the vertical pipeline with a stabilized two-phase flow has the form

{ D .97
A= A’O —I— C!J, ( 7) Fr:0.77’

where A and Ay are the resistance coefficients of the two-phase mixture and conveying medium; p is the
mass flow concentration; D and d are the diameters of the pipeline and particles; Fr; is the Froude num-
ber for the transported particles,

The second addend includes, in addition to losses due to friction and impact of particles, the losses
due to lifting the solid component,

The generalizing character of the equation obtained and the numerical value of its coefficient C were
established in experimental investigations of the prneumatic transport of dustlike, powdery, and granular
materials of nine items differing substantially in fractional composition, hydraulic and geometric size of
the particles, and their density. The transport regimes covered a wide range of variations of the mass
concentration (2 < u < 90), speed of transport, and density of the conveying medium.

For materials the pneumatic transport of which is not accompanied by the formation of a film from
the transported particles on the wall of the pipeline, the coefficient C is equal to 22.5 -10-%2, The standard
deviation in treating the experimental data was « 8.7%.

A special series of experiments on pneumatic transport in rough pipes made possible an evaluation
of the effect of relative roughness of a pipeline on the value of the resistance coefficient of a two-phase

mixture,
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INVESTIGATION OF THE REGION OF STABILITY OF THE
CONTOUR OF NATURAL CIRCULATION DURING BOILING

A. P, Proshutinskii and R. A. Shugam UDC 532.501 .34

This work is devoted to experimental and analytical research on the boundaries of the stability region
of a contour of natural circulation during boiling, The phenomenon of dynamic instability, expressed in the
form of nondamped vibrations of the working parameters, is characteristic for a whole series of systems such
such as uniflow boilers, nuclear water-cooled water-moderated boiling reactors etc,

Experimental research on the boundaries of the stability region was carried out on a special test rig
designed for studying the hydrodynamics of two-phase flows. The circulation contour of this test-rig was
formed by a lifting section, heated by an electric current, a comparatively long nonheated lifting tube, a
separation column, and, finally, a lowering branch,

The outlet of the system on the stability boundary was achieved either by increasing the heating of the
water at the inlet to the heated section to the saturation temperature in the case of constant pressure and
heat emission, or by reducing the pressure in the case of constant remaining parameters. As shown by the
experiments carried out (Fig. 1), the region of unstable flow of the circulation contour in the coordinates
pressure (P)—heating (Ad,) is situated within a triangle formed on the one hand by the axis of heating of the
heat carrier to the saturation temperature at the inlet to the heated part {ordinate), and on the other hand,
by the straight lines which respect the boundary of the region obtained from the experiments.

Pressure increase leads to approach to the upper and lower houndaries of the instability region;
when it reaches a certain value these interlock. Increase of the density of the thermal flux leads to dis~
placement of this point into the high pressure region,

™ \<'\ Fig. 1. Boundaries of the stability region in the
7 \\% g plane of the parameters Ad,—P where n.= 1 @ady,,

= > °K; P, bar): 1-8) theoretical and experimental
curves respectively, for q = 1,27 mV/m?, 1.72,
2.20, 2.60; 9) experimental curve for g = 2.90
mV/m?,

0 20 ) 60 p
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Researchwas carried out on the influence of the resistance of the contour on its stability, As the ex-
periments have shown, the increase of this parameter is a stabilizing factor,

In addition to experimental research on the stability of the contour, analytical research was also
carried out on the stability boundaries using a frequency criterion. The amplitude-—-phase characteristic
of an open system was obtained from equations of conservation of mass, energy, and momentum, written
in integral form and complemented by the expression for leakage of vapor, which is assumed to be constant
with respect to time,

The main allowances made on converting the initial equations are assumptions about the absence of
surface boiling, constancy with respect to time and the level of the region of the physical parameters of
water and vapor, and the constancy of the temperature of the wall of the tube with respect to time. More-
over, the relationship between the actual speeds of the vapor and water and the coordinate were approxi-
mated by linear functions.

Research on the stability of the investigated model was carried out by linear approximation., Com-
parison of theoretical and experimental data was included in the comparison of the boundaries of the sta-
bility region obtained by means of calculation according to the amplitude—phase characteristic of the open
system, by using the frequency criterion of stability, and experimentally (Fig. 1),

In addition, the values of the frequency on the stability boundary obtained from calculation and experi-
mentally were compared; these also agreed quite satisfactorily,
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